Marta Wacławczyk

Research video: Studying Atmospheric Turbulence

31. May 2024

Atmospheric turbulence refers to the irregular, chaotic flow of air in the Earth’s atmosphere. Although the majority of flows in nature are turbulent, our understanding of this phenomena remains surprisingly limited. Moreover, the complex and dynamic nature of atmospheric turbulence within the Earth’s atmosphere poses significant challenges to scientists. 

Jakub Nowak and Marta Wacławczyk explain their scientific work on atmospheric turbulence in one of the research videos developed by Latest Thinking. This video is based on the study „Detecting Nonequilibrium States in Atmospheric Turbulence“, in which scientists Holger Siebert and Szymon P. Malinowski contributed as well. The authors shed light on the temporal changes of turbulence and its implications for atmospheric modeling. In fact, before this study, changes of turbulence were only an assumption based on controlled experiments. Specifically, the authors focused on the behavior of turbulence within stratocumulus clouds over the ocean. 

Stratocumulus clouds are low-level clouds, varying in color from bright white to dark grey, and are the most common clouds on Earth. They have well-defined bases with varying shades, often featuring gaps but sometimes merging together. Typically, they form from a layer of stratus clouds breaking up and signal an upcoming weather change.

Marta Wacławczyk is an Assistant Professor at the University of Warsaw’s. With a PhD from Gdańsk and a rich background in fluid flow mechanics, she brings extensive expertise in the statistical analysis and modeling of turbulentflows. Jakub Nowak, on the other hand, is a postdoctoral researcher at the University of Warsaw’s. His research, deeply rooted in the properties of turbulence within stratocumulus clouds, reflects his commitment to advancing our understanding of atmospheric dynamics.

Understanding atmospheric turbulence is essential for improving weather prediction models, climate simulations, and aviation safety. Furthermore, by exploring the temporal changes in turbulence within stratocumulus clouds, the work projected in this research video not only advances scientific knowledge, but also holds promise for improving climate modeling and weather prediction.


Further Articles

20. July 2024

Weaker land–atmosphere coupling in global storm-resolving simulation

Maps of daily temperature

12. July 2024

Using Machine Learning to identify climate models

5. July 2024

The Role of Aerosols in our Climate: Insights from the nextGEMS Project

Privacy

Here you can make settings regarding data protection.